Płytka geotermia, p

Dr inż. Tomasz Hałon

 Należy ściągnąć program CoolTools ze strony: <u>https://www.ipu.dk/products/cooltools/</u>

Download

Get CoolTools here: <u>Download CoolTools v1.1.1</u>

Change log

v1.1.1 - 2024/03/14

• Fixed display of process parameter units (kW), air cooler tool Fixed numerical stability with fully saturated inlet/outlet air, air cooler tool

 Na karcie Cycle analysis wybieramy system jednostopniowy z parowaczem o bezpośrednim rozprężaniu i przejść do specyfikacji

 W temperaturach wpisujemy obliczone na ostatnich zajęciach temperatury: T_E – temperatura parowania, T_K – temperatura skraplania.

c	Ine Stage DX	Que Sta	age Flooded		
Hop Cycle Specifications Au	kiliary				
Temperature Levels	Pressure Losses	Suction Gas He	at Exchanger F	Refrigerant	
T _E [°C]: -10,00 📮 4 GH [K]: 5,	00 🖨 Δp _{SL} [K]: 0	,50 🖨 No SGHX	<u> </u>	CoolProp	-
T _C [°C]: 35,00 📮 T _{SC} [K]: 2,	00 🖨 Δp _{DL} [K]: 0	,50 🖨 0,30		R290	•
Compressor Performance	ο τ Qε[Kwy]: 10 Qc φ ηίτς[-]: 0.7 Ŵ	[kw]: 3.138	νς (m/n]: 1/	.30	
Compressor Heat Loss	00 🛋 f. [%]: 10	T- [9C]: 56 11 0 [kw]: (0.2129		
	,00 🛋 ιδ[30], το	121 CJ. 50.11 QLOSS [KW]: 1	0.3130		
Unuseful superheat [K] _ 1,00	Q _{SL} [W]: 66.853 T ₈ [⁴	PC]: -4 ΔT _{StSL} [K]: 1			
Cycle Performance					
	COD# []: 2 200	COD [], 5.0470		[-]· 0 5499	58

• W części poświęconej wydajności urządzenia wybieramy wydajność grzewczą (heating capacity) i wpisujemy wartość nas interesującą.

	Dine Stage DX	L One Sta	ge Flooded		
Home Cycle Specifications Au	viliary	Suction Gas He	at Exchanger — Refri	gerant	
T _E [°C]: -10,00 🖨 ΔT _{SH} [K]: 5	,00 🗢 Δp _{S.} [K]: 0	,50 🖨 No SGHX	[Coo	- IProp	_
T _c [°C]: 25 cm [1] [2]	00 🖨 Δp _{DL} [K]: 0	,50 🖨 0,30	\$ R29	0	_
Compared Performance	ο 🌒 ηi _{īs} [-]: 0.7 Ŵ	[kW]: 3.138			
Compressor Heat Loss	0,00 € f _Q [%]: 10	T ₂ [°C]: 56.11 Q _{LOSS} [kW]: 0).3138		
Suction Line Unuseful superheat [K] _ 1,00	Q _{SL} [W]: 66.853 T ₈ [PC]: -4 ΔΤ _{SMS.} [K]: 1			
Cycle Performance					
000 [] 0 4057	COD* [-]+ 2 209	COP [-]: 5 9479	8	- [-1: 0 54858	

 Sprawdzamy wartości COP dla każdego dostępnego w programie czynnika chłodniczego (ziębnika). Należy wybrać ten o najwyższym współczynniku COP.

	One Stage DX	One Stage	Flooded		
Home Cycle Specifications A	uxiliary				
Temperature Levels	Pressure Losses	Suction Gas Heat	Exchanger P ge	erant	
T _E [°C]: -10,00 🗘 ΔT _{SH} [K]: 🗄	5,00 🖨 Δp _{SL} [K]: 0,5	50 🗘 No SGHX	CoolP	rop	•
T _C [°C]: 35,00 🖨 ΔT _{SC} [K]: 2	2,00 🖨 Δp _{DL} [K]: 0,5	50 \$ 0,30	\$ R290		<u> </u>
Compressor Performance	00 🖶 Q _E [KW]: 10 Q _C [ł	(W]: 12.89 m [kg/s]: 0.0351	2 V ₅ [m³/h]: 17.38		
Compressor Performance [Isentropic efficiency [-] <u>]</u> 0,7 Compressor Heat Loss	00	wV]: 12.89 m [kg/s]: 0.0351 kw]: 3.138	2 V _s [m³/h]: 17.38		
Compressor Performance Isentropic efficiency [-] <u>-</u> [0,7 Compressor Heat Loss [Heat loss factor [%] <u>-</u> [00 ♥ Q _R [KW]: 10 Q _C [i 70 ♥ ηt ₅ [-]: 0.7 W [0,00 ♥ f _Q [%]: 10 T	wy]: 12.89 m [kg/s]: 0.0351 kw]: 3.138	2 V _s [m³/h]: 17.38		
Compressor Performance [Isentropic efficiency [-] I, 0,7 Compressor Heat Loss [Heat loss factor [%] I Suction Line	00 ♀ Q _E [KW]: 10 Q _C [1 70 ♀ ηi ₅ [-]: 0.7 Ŵ [0,00 ♀ f _Q [%]: 10 T	W]: 12.89 m [kg/s]: 0.0351 kW]: 3.138 2[°C]: 56.11 Q _{LOSS} [kW]: 0.3	2 Ý ₅ [m ² /h]: 17.35		
Compressor Performance [Isentropic efficiency [-] I., Compressor Heat Loss [Heat loss factor [%] I. Suction Line [Unuseful superheat [K] I.,00	00 ♀ Q _R [KW]: 10 Q _C [I 70 ♀ η ¹ / ₁₅ [-]: 0.7 Ŵ [0,00 ♀ f _Q [%]: 10 T ♀ Q _R [W]: 66.853 T _B [°G	W]: 12.89 m [kg/s]: 0.0351 kW]: 3.138 ;[°C]: 56.11 Q _{LOSS} [kW]: 0.3 C]: -4 ΔT _{BKR} [K]: 1	2 ¥₅[m²/h]: 17.35		
Compressor Performance [Isentropic efficiency [-] 0,7 Compressor Heat Loss [Heat loss factor [%] 1 Suction Line [Unuseful superheat [K] 1,00 Cycle Performance	00 ♥ Q ₈ [KW]: 10 Q _c [I 70 ♥ ηi ₅ [-]: 0.7 Ŵ [0,00 ♥ f _Q [%]: 10 T ♥ Q ₈ [W]: 66.853 T ₈ [%	W]: 12.89 m [kg/s]: 0.0351 kW]: 3.138 ₂ [°C]: 56.11 Q _{Loss} [kW]: 0.3 C]: -4 ΔT _{SK2} [K]: 1	2 Ý ₅ [m ³ /h]: 17.30		

 Po wyborze najsprawniejszego ziębnika należy sprawdzić czy jest on dozwolony prawnie w UE:

ODP = 0

2024/573

20.2.2024

ROZPORZĄDZENIE PARLAMENTU EUROPEJSKIEGO I RADY (UE) 2024/573

z dnia 7 lutego 2024 r.

w sprawie fluorowanych gazów cieplarnianych, zmieniające dyrektywę (UE) 2019/1937 i uchylające rozporządzenie (UE) nr 517/2014

(Tekst mający znaczenie dla EOG)

	STACJONARNE URZĄDZENIA KLIMATYZACYJNE I STACJONARNE POMPY CIEPŁA				
		 a) pokojowe urządzenia klimatyzacyjne typu plug-in, które użytkownik końcowy może przemieszczać między pomie- szczeniami, zawierające HFC o GWP równym 150 lub więk- szym; 	1 stycznia 2020 r.		
(8)	Samodzielne urządzenia klimatyzacyjne i pompy ciepła, z wyjątkiem chille- rów:	b) pokojowe urządzenia klimatyzacyjne, monoblokowe urzą- dzenia klimatyzacyjne, inne samodzielne urządzenia klima- tyzacyjne i samodzielne pompy ciepła typu plug-in, o maksy- malnej mocy znamionowej do 12 kW włącznie, zawierające fluorowane gazy cieplarniane o GWP równym 150 lub więk- szym, chyba że jest to wymagane do spełnienia wymogów bezpieczeństwa. Jeśli wymogi bezpieczeństwa w miejscu eksploatacji nie pozwalają na stosowanie fluorowanych gazów cieplarnianych o GWP poniżej 150, limit GWP wynosi 750;	1 stycznia 2027 r.		
		c) pokojowe urządzenia klimatyzacyjne, monoblokowe urzą- dzenia klimatyzacyjne inne samodzielne urządzenia klimaty- zacyjne i samodzielne pompy ciepła typu plug-in, o maksy- malnej mocy znamionowej do 12 kW włącznie, zawierające fluorowane gazy cieplarniane, chyba że jest to wymagane do spełnienia wymogów bezpieczeństwa. Jeśli wymogi bezpie- czeństwa w miejscu eksploatacji nie pozwalają na stosowanie alternatyw dla fluorowanych gazów cieplarnianych, limit GWP wynosi 750;	1 stycznia 2032 r.		
		d) monoblokowe i inne samodzielne urządzenia klimatyza- cyjne i pompy ciepła o maksymalnej mocy znamionowej większej niż 12 kW, ale nieprzekraczającej 50 kW, które zawierają fluorowane gazy cieplarniane o GWP równym 150 lub większym, chyba że jest to wymagane do spełnienia wymogów bezpieczeństwa. Jeśli wymogi bezpieczeństwa w miejscu eksploatacji nie pozwalają na stosowanie fluoro- wanych gazów cieplarnianych o GWP poniżej 150, limit GWP wynosi 750;	1 stycznia 2027 r.		

- Następnie sprawdzamy czy czynnik jest nietoksyczny (Kategoria bezpieczeństwa A) i jak mocno palny (kategoria bezpieczeństwa 1-3)
- Jeśli czynnik jest nietoksyczny, ale palny, to nie stanowi to aż tak dużego problemu.
- Na samym końcu należy sprawdzić dostępność wybranego czynnika w hurtowniach.